
Usage of the Neosensory Developer API is subject to our Developer Terms of Service and License located at
https://neosensory.com/legal/dev-terms-service/

1
Copyright 2020, Neosensory, Inc.

Neosensory Developer API

Last Update: 04-21-2021

Introduction
The Neosensory Developer API enables anyone to stream custom vibrations to the Buzz and other Neosensory

products over Bluetooth Low Energy (BLE). One can also connect over USB (using a Serial terminal application

with a baud rate of 9600), but BLE is better to work with for practical purposes as it enables the device to be

worn. To work with BLE, the developer is generally responsible for performing all BLE tasks relating to scanning,

pairing, connecting, etc. There are a number of platform-dependent libraries that can help with this. Neosensory

is also preparing Software Development Kits (SDKs) to help streamline this process.

JSON Formatting

The API produces JSON formatted responses, with the following structure:

{“status_code”: <status code>, “message”: <message> or “data”: { <JSON data structure> } or “error”:

<message>}

with the following status codes:

Status Codes Description

200 Success

400 Bad Request/Error

https://neosensory.com/legal/dev-terms-service/

Usage of the Neosensory Developer API is subject to our Developer Terms of Service and License located at
https://neosensory.com/legal/dev-terms-service/

2
Copyright 2020, Neosensory, Inc.

Access and Usage of the API and SDK

The Developer API and SDK are currently free for anyone to access and use subject to the acceptance of

Neosensory’s Developer Terms and Conditions. Using the Developer API requires an explicit acceptance

command (see API documentation below).

Bluetooth Low Energy
Neosensory uses the Generic Attribute Profile (GATT) interacting with its hardware.

Advertising data:
• Friendly name : string "<PREFIX><MACADDR>" eg. "BuzzF98D6D6B0234"

• Appearance: Generic Watch

Relevant UUIDs:

UART over BLE Service (UUID: 6E400001-B5A3-F393-E0A9-E50E24DCCA9E)

Characteristics:

• UART RX (UUID: 6E400002-B5A3-F393-E0A9-E50E24DCCA9E)

o Write without response and write

• UART TX (UUID: 6E400003-B5A3-F393-E0A9-E50E24DCCA9E)

o Notify

Motor Control

The "motors vibrate" command allows direct control over the Buzz's motors. It takes as an
argument a base64 encoded string representing "motor control frames". Each motor control
frame consists of 4 bytes with each byte representing the amplitude of a single motor.
Neosensory Buzz can queue up to 64 motor control frames. It plays them with a set interval of
16 ms between frames. The previous frame persists until the next frame is available in the
queue. Depending on your system constraints and BLE parameters negotiated with Buzz, you
may not be able be to transmit perfectly a “motors vibrate” command periodically every 16 ms.
To achieve a smooth playback, you can transmit several motors control frames in a single
“motors vibrate” command. To send multiple control frames, the 4 byte motor control frames
need to be concatenated sequentially before encoding with base64. If your device has
successfully negotiated the largest BLE MTU size with Buzz, you can send up to 42 frames in
a single “motors vibrate” command. If the motor queue was full, it will return an error message
saying so.

https://neosensory.com/legal/dev-terms-service/
https://neosensory.com/legal/dev-terms-service

Usage of the Neosensory Developer API is subject to our Developer Terms of Service and License located at
https://neosensory.com/legal/dev-terms-service/

3
Copyright 2020, Neosensory, Inc.

Future Enhancement: Buzz will respond with the frame index at which it stopped filling its
queue along with the error message currently reported

Developer API Commands

Command Minimum Firmware Level Description

auth as developer < 1.5.4.132 Request developer authorization. Returns the message

“Please type 'accept' and hit enter to agree to

Neosensory Inc's Developer Terms and Conditions,

which can be viewed at

https://neosensory.com/legal/dev-terms-service”

accept < 1.5.4.132 After successfully calling auth as developer, use the

accept command to agree to the Neosensory

Developer Terms and Conditions. Successfully calling

this unlocks the following commands: audio start,

audio stop, motors_clear_queue, motors start,

motors_stop, motors vibrate.

audio start < 1.5.4.132 (Re)starts the device’s microphone audio acquisition.

This command requires successful developer

authorization, otherwise, the command will fail.

audio stop < 1.5.4.132 Stop the device’s microphone audio acquisition. This

should be called prior to transmitting motor vibration

data. This command requires successful developer

authorization, otherwise, the command will fail.

device battery_soc < 1.5.4.132 Obtain the device’s battery level in %. This command

does not require developer authorization.

device info < 1.5.4.132 Obtain various device and firmware information. This

command does not require developer authorization.

motors clear_queue < 1.5.4.132 Clear any vibration commands sitting the device’s

motor FIFO queue. This should be called prior to

streaming control frames using motors vibrate.

motors start < 1.5.4.132 Initialize and start the motors interface. The motors

can then accept motors vibrate commands.

motors stop < 1.5.4.132 Clear the motors command queue and shut down the

motor drivers.

https://neosensory.com/legal/dev-terms-service/
https://neosensory.com/legal/dev-terms-service
https://neosensory.com/legal/dev-terms-service

Usage of the Neosensory Developer API is subject to our Developer Terms of Service and License located at
https://neosensory.com/legal/dev-terms-service/

4
Copyright 2020, Neosensory, Inc.

motors vibrate
<control frames>

< 1.5.4.132 <control frames> is a string represented by a base64

encoded byte array where each byte represents motor

intensity for each motor. Multiple motor control

frames can be sent as concatenated byte arrays.

The FIFO queue size on the band is 64 control frames

played out every 16ms.

Examples:

All OFF - motors vibrate AAAAAA==

Motor 0 - motors vibrate /wAAAA==

Motor 1 - motors vibrate AP8AAA==

Motor 2 - motors vibrate AAD/AA==

Motor 3 - motors vibrate AAAA/w==

Motor 3 ON for 16ms and then OFF - motors vibrate
AAAA/wAAAAA=

--- for FW 1.5.4.132 and above ---

The band’s response to this command is optional, and

controlled by the motors config_threshold

command. If a response arrives, below are the

potential responses:

“status_code”: 400 response parameters

“motor queue full”: The internal motor queue is full.

The depth of the motor queue can be requested using

the motors get_threshold command.

“motors are stopped”: You must send motors start

command prior to sending this command.

“status_code” 200 response parameters:

“queue_status”: integer represented as char, range: 0 -

2

This parameter reports that status of the depth of the

motor queue, based on the motors config_threshold

command.

0 = Threshold not yet reached

1 = Threshold reached

2 = Threshold exceeded

”curr_queue_depth”: decimal integer represented as

char array, range: 0 - 64

https://neosensory.com/legal/dev-terms-service/

Usage of the Neosensory Developer API is subject to our Developer Terms of Service and License located at
https://neosensory.com/legal/dev-terms-service/

5
Copyright 2020, Neosensory, Inc.

The number of motors vibrate commands in the

queue.

motors
config_threshold
<feedback type>
<threshold>

1.5.4.132 This command controls how the band responds to the

motors vibrate command listed above.

<feedback type>: integer represented as char, range: 0

- 2

0 = Default (same behavior as firmware pre

1.5.4.132). In this configuration, the motors vibrate

does not return a response unless an error occurs.

Potential errors are listed above.

1 = Always respond. In this configuration, the motors

vibrate command always returns a response.

2 = Threshold response. In this configuration, the

motors vibrate command only returns a response if

the threshold is reached or exceeded.

<threshold>: decimal integer represented as char

array, range: 0 - 64

This parameter controls the threshold at which the

band will respond to a motors vibrate command if

the feedback type is set to 2 (threshold response).

https://neosensory.com/legal/dev-terms-service/

Usage of the Neosensory Developer API is subject to our Developer Terms of Service and License located at
https://neosensory.com/legal/dev-terms-service/

6
Copyright 2020, Neosensory, Inc.

motors get_threshold 1.5.4.132 This command returns the current motors vibrate

command queue configuration.

“feedback_type”: This parameter is set by the motors

config_threshold command. Default = 0.

“high_threshold”: This parameter is set by the motors

config_threshold command. Default =

max_queue_depth.

“max_queue_depth”: This parameter is the hard coded

maximum queue depth for the firmware. Default = 64.

motors
config_lra_mode
<mode>

1.5.4.132 This command sets the LRA operation mode. This

setting is not persistent, and will reset to the default

(open loop) if the band is reset.

<mode>: integer represented as char, range: 0 - 1

0 = LRA open loop mode

1 = LRA closed loop mode

WARNING: Closed loop mode is not designed for

applications where the motors will be vibrating

persistently over long stretches of time. Using

closed loop mode in this way may damage you or

your users’ devices and reduce LRA lifespan.

Neosensory will not be held liable or take

responsibility for any damage incurred by running

the devices with closed loop mode.

motors get_lra_mode 1.5.4.132 This command allows you to read the current LRA

vibration mode.

“lra_mode”: The current LRA operation mode:

0 = LRA open loop mode (default)

1 = LRA closed loop mode

https://neosensory.com/legal/dev-terms-service/

Usage of the Neosensory Developer API is subject to our Developer Terms of Service and License located at
https://neosensory.com/legal/dev-terms-service/

7
Copyright 2020, Neosensory, Inc.

leds set <LED 1
color> <LED 2 color>
<LED 3 color> <LED 1
intensity> <LED 2
intensity> <LED 3
intensity>

1.5.4.132 This command allows you to control each of the

band’s 3 LED’s color and intensity.

<LED X color>: hex integer represented as char array,

range: 0 - 0xFFFFFF

This parameter controls the RGB color of the

respective LED. The upper 8-bits represent the

intensity of red, the middle 8-bits represent the

intensity of green, and the lower 8-bits represent the

intensity of blue. For example:

0xFF0000 = red

0xFF00 = green

0xFF = blue

0xFFFFFF = white.

(Web Colors)

<LED X intensity>: decimal integer represented as

char array, range: 0 - 50

0 = Off

50 = Max glow

The parameter controls the intensity of the LED.

leds get 1.5.4.132 This command allows you to read the current state of

the LEDs.

“color”: array of decimal integers: [LED 1 color, LED

1 color, LED 1 color]

The parameter contains an array of the RGB color

codes that were last set for each LED.

“intensity”: array of decimal integers: [LED 1

intensity, LED 1 intensity, LED 1 intensity]

This parameter contains an array of intensities,

representing the current intensity of each LED.

https://neosensory.com/legal/dev-terms-service/

Usage of the Neosensory Developer API is subject to our Developer Terms of Service and License located at
https://neosensory.com/legal/dev-terms-service/

8
Copyright 2020, Neosensory, Inc.

config
set_buttons_response
<enable feedback>
<allow sensitivity
changes>

1.5.4.132 <enable feedback>: integer represented as char, range:

0 - 1

0 = disabled, the band will not generate a CLI

response when a button is pressed.

1 = enabled, the band will send an unsolicited CLI

response each time any button is pressed. The

unsolicited message format is listed below.

<allow sensitivity changes>: integer represented as

char, range: 0 - 1

0 = not allowed, when a user presses the +/- buttons,

the microphone intensity will not be changed, and no

LED activity will be generated.

1 = allowed, when a user presses the +/- buttons, the

microphone sensitivity will be changed, and the LEDs

will indicate the current microphone sensitivity.

Unsolicited button response format:

When this command’s parameter <enable feedback> =

1, and a user presses a button, the following message

will be sent:

“status_code”: 201

“type”: “button_press”

“button_val”:

https://neosensory.com/legal/dev-terms-service/

Usage of the Neosensory Developer API is subject to our Developer Terms of Service and License located at
https://neosensory.com/legal/dev-terms-service/

9
Copyright 2020, Neosensory, Inc.

1 = Plus button was pressed

2 = Power button was pressed

3 = Minus button was pressed

https://neosensory.com/legal/dev-terms-service/

